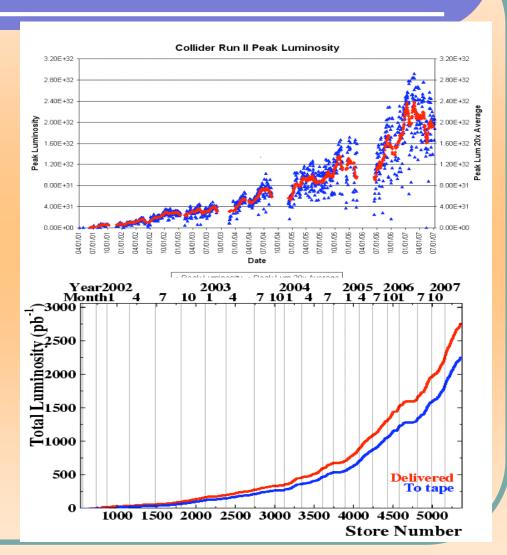
Top and Ewk Results from the Tevatron

Andrew Ivanov

University of California, Davis for the CDF and DØ Collaborations

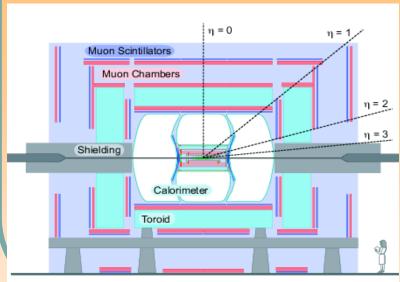
Hadron Structure September, 2007

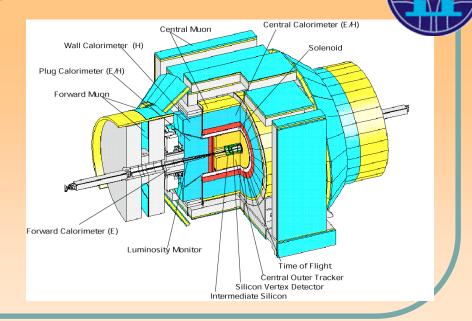

The Tevatron Collider

- Operating at presently world's highest particle energy collisions
- Currently the world's only top quark production machine
- Two multi-purpose detectors
- Run 1 (1992-1996)
 - \circ \int s = 1.8 TeV
 - Integrated Lum ~110 pb⁻¹
 - Top Discovery!
- Run 2 (2001-present)
 - $\int s = 1.96 \text{ TeV}$

Tevatron Performance

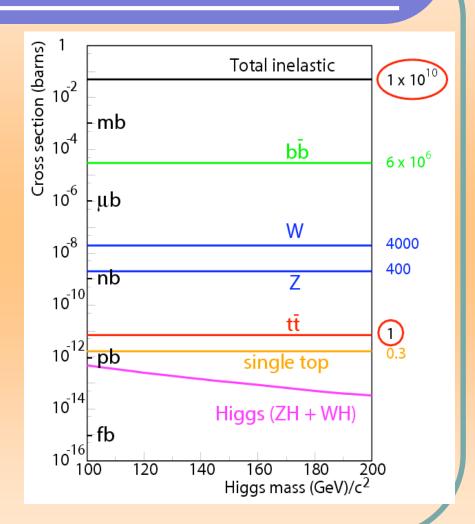
- Record Initial Luminosity
 2.9x10³² cm²s⁻¹
- Luminosities above 2x10³²
 cm⁻²s⁻¹ are now common
- Expect initial luminosities above 3x10³² cm⁻²s⁻¹ next year
- Integrated Luminosity per week ~ 50 pb-1 (a half of of the Run1 dataset)
- On tape ~ 2.7 fb⁻¹
- Aim for 6-8 fb⁻¹ by 2009

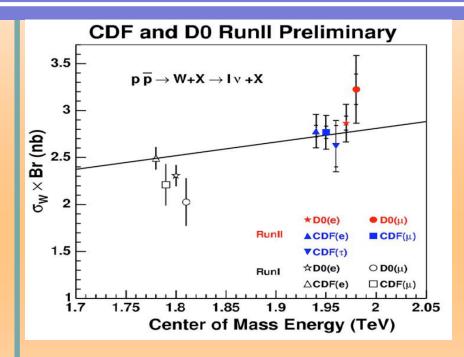


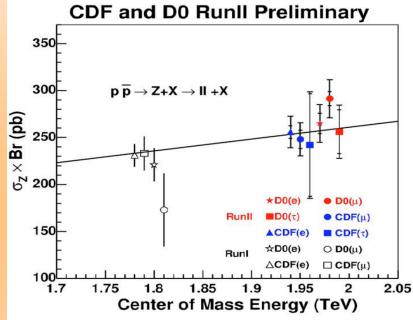

Tevatron Detectors

- Inner Silicon Precision Tracking
- Tracking Chambers
- Solenoid
- EM and HAD calorimeters
- Muon Detectors

All crucial for ewk and top physics!

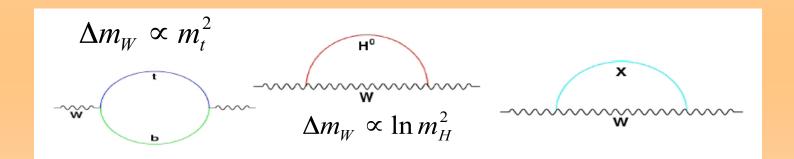





Production Cross Sections at Tevatron

- Cross sections for various physics processes vary over many orders of magnitude
- One top pair produced every 10¹⁰ inelastic collisions
- Physics processes of interest buried under heavy backgrounds
- Need good rejections factors, event selection, analysis strategy

Inclusive W/Z Cross Sections

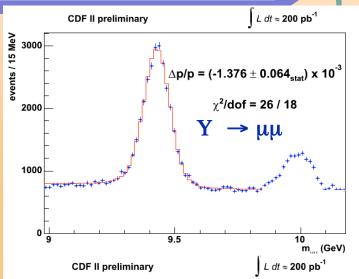

- Measured in all leptonic final states (W->e ν , $\mu\nu$, $\tau\nu$; Z->ee, $\mu\mu$, $\tau\tau$)
- Good agreement with NNLO calculations (Stirling, Van Neereven)
- Measurements are dominated by luminosity uncertainty ~6% followed by PDF ~2%

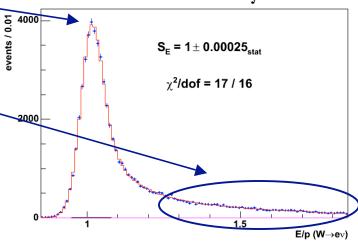
W Mass

W mass is a fundamental parameter of SM

$$m_W^2 = \frac{\pi \alpha_{em}}{\sqrt{2}G_F \sin^2 \theta_W (1 - \Delta r)}$$

- Radiative corrections to M_W depend on M_{top} and M_{Higgs}
- W propagator includes H, tb, hypothetical new particle loops

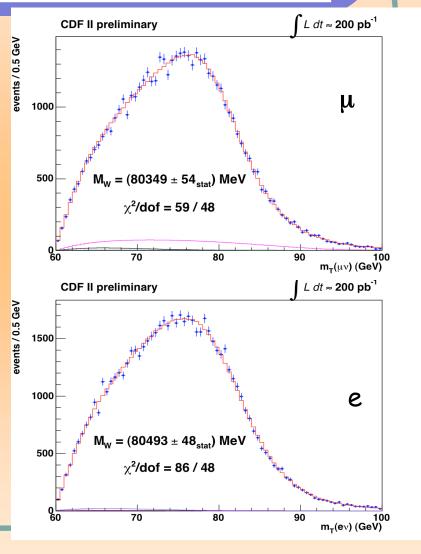

- Precise knowledge of M_W and M_{top} constrains M_{Higgs}
- With ultimate precision also sensitive to possible exotic radiative corrections


W Mass Measurement

Detector Calibration:

- Lepton Momentum Scale
 - Internal tracker alignment with cosmic rays
 - Curvature corrections from electronpositron E/P difference
 - Calibration with $J/\psi, Y \rightarrow \mu\mu$
 - Cross-check with $Z \rightarrow \mu\mu$
- Lepton Energy Scale
 - Calibrated using E/p electron peak
 - Cross-checked with Z → ee
- Detector Material Model
 - Mapped energy loss and radiation lengths
 - Calibrated to data
- Recoil Response
 - Calibrated with Z balancing
- W mass obtained from fits to lepton E_T , missing E_T and transverse mass distributions

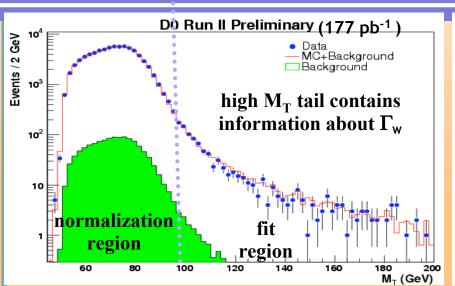
W Mass Result

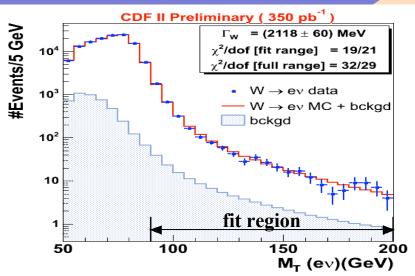

CDF II preliminary			L = 200 pb ⁻¹
m _⊤ Uncertainty [MeV]	Electrons	Muons	Common
Lepton Scale	30	17	17
Lepton Resolution	9	3	0
Recoil Scale	9	9	9
Recoil Resolution	7	7	7
u _⊪ Efficiency	3	1	0
Lepton Removal	8	5	5
Backgrounds	8	9	0
p _⊤ (W)	3	3	3
PDF	11	11	11
QED	11	12	11
Total Systematic	39	27	26
Statistical	48	54	0
Total	62	60	26

 $M_W = 80413 \pm 48 \text{ MeV}$

80413 ± 34 (stat) ± 34 (syst)

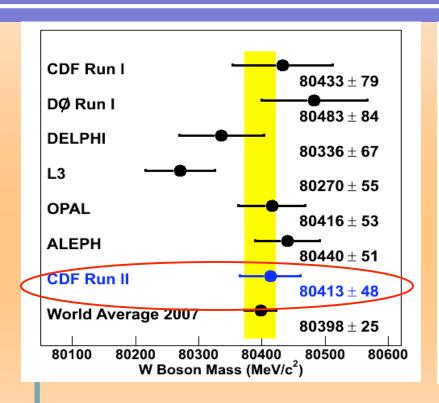
Single most precise measurement to date!

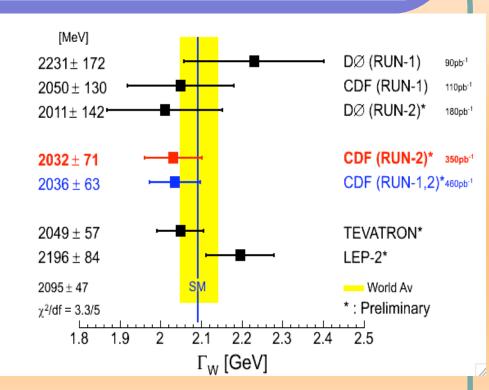

hep-ex/0707.0085



Direct Measurement of $\Gamma_{\rm w}$

 $\Gamma_{\rm W}$ [DØ(e)] = 2011 ± 142 MeV $\Gamma_{\rm W}$ [CDF(e+ μ)] = 2032 ± 71 MeV


CDF's Result is the world's most precise single direct measurement!

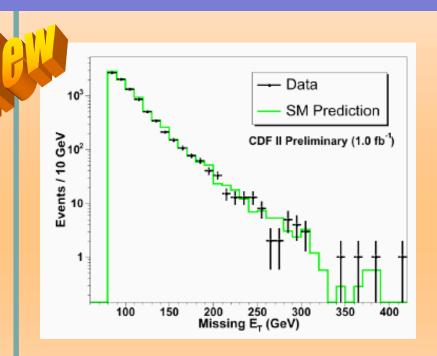

CDF Run I	l Preliminary	(350 pb ⁻¹)
-----------	---------------	-------------------------

	$\Delta\Gamma_{_{\mathrm{W}}}$ [MeV]		
	Electrons	Muons	Common
Lepton Scale	21	17	12
Lepton Resolution	31	26	0
Simulation	13	0	0
Recoil	54	49	0
Lepton ID	10	7	0
Backgrounds	32	33	0
$p_T(W)$	7	7	7
PDF	16	17	16
QED	8	1	1
W mass	9	9	9
Total systematic	78	70	23
Statistical	60	67	0
Total	98	97	23

M_w and Γ_w World Averages

With new CDF's most precise single results:

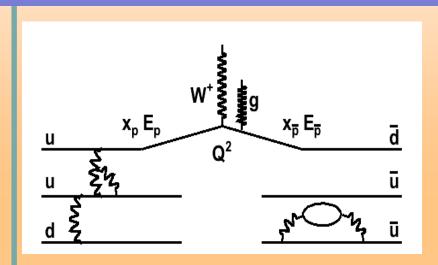
M_w: 80392 -> 80398 MeV

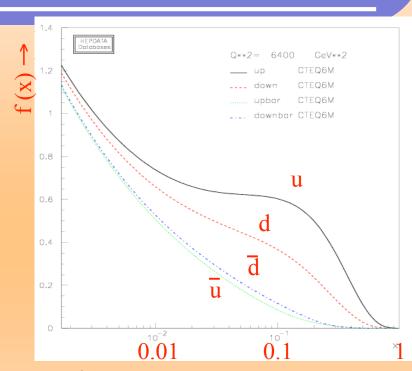

 $\Delta M_{\rm W}$: 29 -> 25 MeV

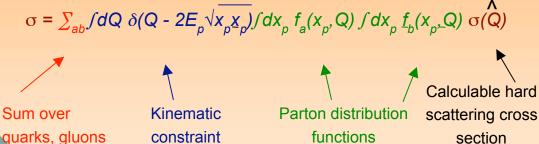
 $\Gamma_{\rm W}$: 2139 -> 2095 MeV

 $\Delta\Gamma_{\rm W}$: 60 -> 47 MeV

Z Boson Invisible Width

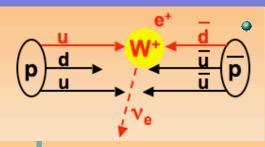

 Interepret the result of no excess in "monojet" + large missing ET extra dimensions search


$$\Gamma_{Z} (inv) = \frac{\sigma (Z+1jet) xBr(Z->vv)}{\sigma (Z+1jet) xBr(Z->ll)} x \Gamma_{Z} (ll)$$

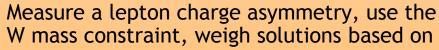

Experiment	$\Gamma(Z \rightarrow invisible) [MeV]$
CDF	466 +/- 42
L3	498 +/- 17
OPAL	539 +/- 31
ALEPH	450 +/- 48
LEP Combined	503 +/- 16
LEP Indirect	499.0 +/- 1.5

 $\Gamma_{\rm Z\,inv.}$ = 466 ± 42 MeV

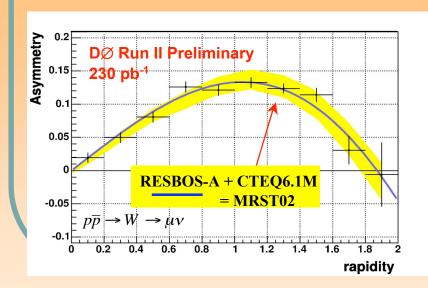
QCD Boson Production and Parton Distribution Functions

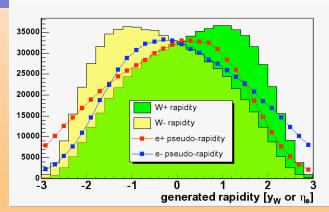


Parton momentum fraction within the proton depends on quark type and is different for valence and sea quarks

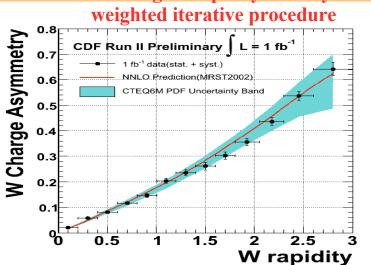


W Charge Asymmetry

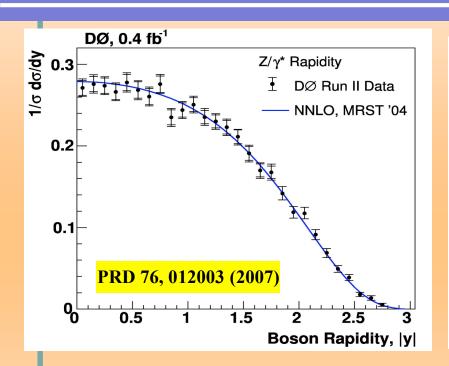


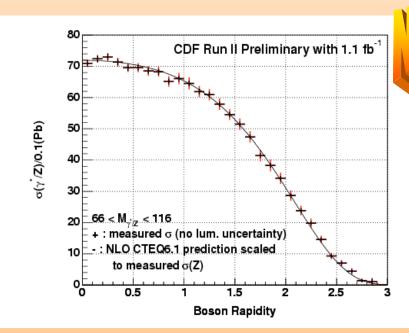


W boson exhibit a production asymmetry due to the different PDF of u and d quarks in the proton

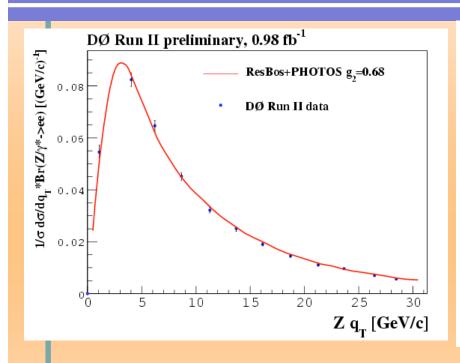


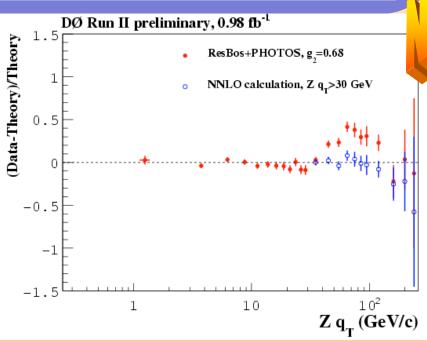
- W production mechanism (dσ/dy)
- V-A structure of W decay $(1\pm\cos\theta^*)^2$


CDF significantly increases sensitivity to PDF by reconstructing W rapidity directly with a



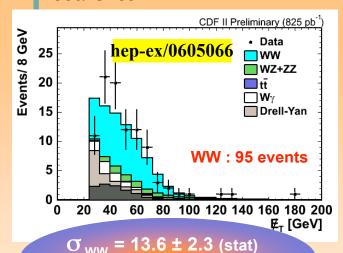
Drell-Yan Z/γ^* -> $e^+e^$ d σ /dy Differential Cross Section



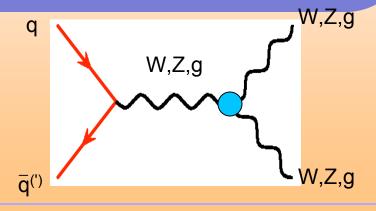


- Measurement probes the small x, high Q² portion of the PDFs
- Good agreement with theory
- Measurement can be used to constrain PDFs.

Drell-Yan Z/γ^* -> $e^+e^$ $d\sigma/dq_T$ Differential Cross Section



- At high-q_T (> 20 GeV) dominated by radiation of a single parton described by perturbative QCD (NNLO)
- At low-q_T reliably predicted by soft gluon resummation (CSS)
- The parametrization of Z boson q_T spectrum used to reduce uncertainties in the W mass measurement
 J. Colling


J. Collins, D. Soper, G. Streman, Nucl. Phys. B250 (1985) 199

Dibosons / WW Production

- Probe non-Abelian nature of $SU(2)_L \otimes U(1)_Y$ via gauge boson self-interactions (triple, quartic)
- The Tevatron (ppbar) is sensitive to different combinations of tri-linear gauge couplings than LEP (e⁺e⁻) and explores higher s
- Intermediate step towards SM Higgs searches

 \pm 1.6 (syst) \pm 1.2 (lumi) pb

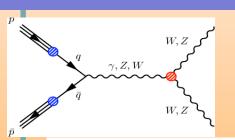
$$q\bar{q}' \rightarrow W^* \rightarrow W\gamma : WW\gamma \text{ only}$$

$$q\bar{q}' \rightarrow W^* \rightarrow WZ : WWZ \text{ only}$$

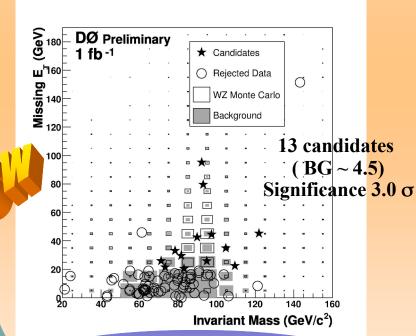
$$q\bar{q} \rightarrow Z/\gamma^* \rightarrow WW : WW\gamma , WWZ$$

$$q\bar{q} \rightarrow Z/\gamma^* \rightarrow Z\gamma : ZZ\gamma, Z\gamma\gamma$$

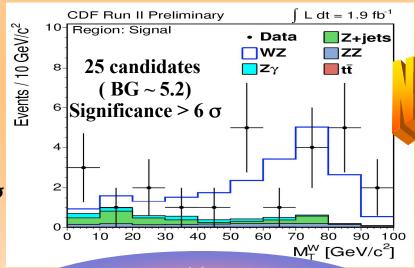
$$q\bar{q} \rightarrow Z/\gamma^* \rightarrow ZZ : ZZ\gamma, ZZZ$$


Absent in SM

In good agreement with NLO theory: 12.4 ± 0.8 pb

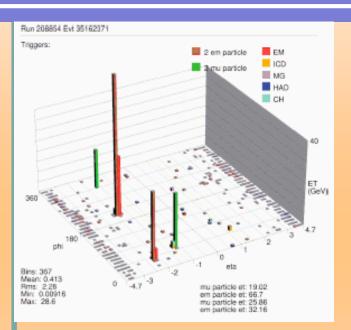


WZ Production



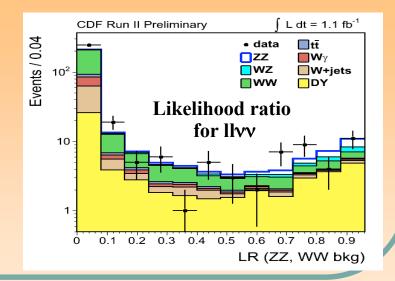
- s-channel provides sensitivity to WWZ vertex coupling
- CDF: Increased sensitivity due to significant improvement in lepton acceptance
- DØ: Use Z p_T distribution to set tightest limits on anomalous couplings

 $\sigma_{WZ} = 2.7^{+1.7}_{-1.5} \text{ pb}$


 $\sigma_{WZ} = 4.3^{+1.3}_{-1.0} \text{ (stat)}$ ± 0.2 (syst) ± 0.3 (lumi) pb

In good agreement with NLO theory: 3.7 ± 0.3 pb

First hints of ZZ

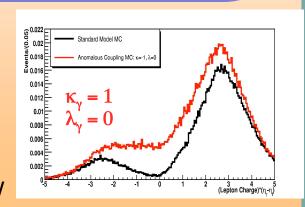


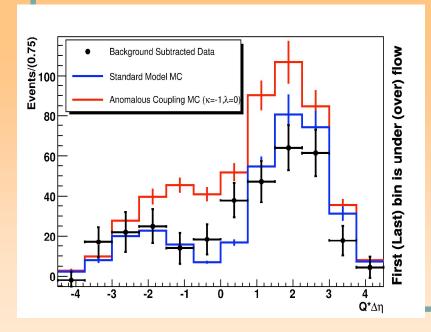
- NLO: $\sigma = 1.6 \pm 0.1 \text{ pb}$
- J. M. Campbell R. K. Ellis PRD60 (1999)
- DØ: 1 eeμμ candidate, expected ~ 1.5:

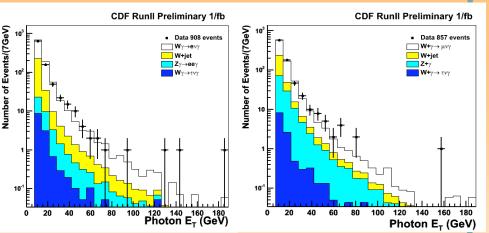
 $\sigma(ZZ) < 4.3 \text{ pb } (95\%CL)$

- CDF combined 4l and llvv channels:
 - CDF: Observed 1 eeμμ candidate;
 expect ~2.5
 - Significance > 3σ

 $\sigma(ZZ) = 0.75^{+0.71}_{-0.54} \text{ pb}$

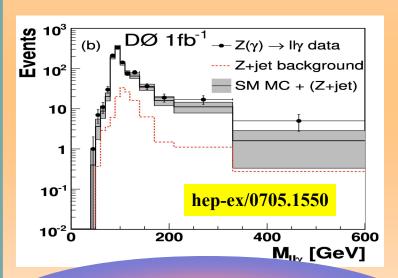

Wy Production

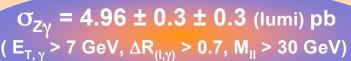


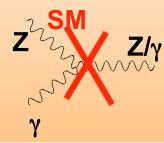

- DØ: Radiation Amplitude Zero
- Due to interference of tree-level diagrams the angle between W and incoming quark is

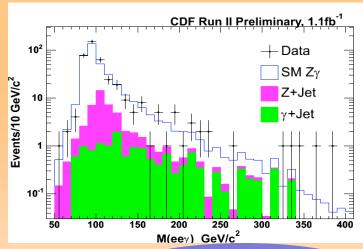
$$cos(\theta^*) = -(1+2Q_d) = +/-1/3$$

- Measure a dip in η_{lepton}
- In the alternative model a set of anomalous WWγ couplings produces a zero magnetic dipole moment for W

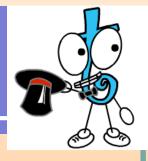

 $\sigma[CDF]_{W\gamma} = 18.0 \pm 2.8 \text{ pb}$ ($E_{T, \gamma} > 7 \text{ GeV}, \Delta R_{(I, \gamma)} > 0.7$)

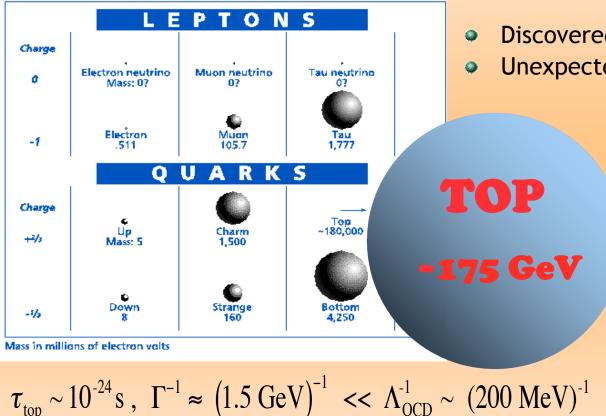



Zy Production



- SM: No Triple Gauge Coupling at tree level
- DØ: Set tightest limits on Zγ anomalous couplings
- h₄₀ limits surpass LEP

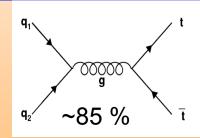


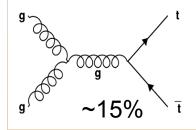


 $\sigma_{Z\gamma} = 4.9 \pm 0.5 \text{ pb}$ ($E_{T, \gamma} > 7 \text{ GeV}, \Delta R_{(I, \gamma)} > 0.7,$ $M_{ee\gamma} > 40 \text{ GeV})$

In good agreement with theory: 4.7 ± 0.4 pb

Top quark

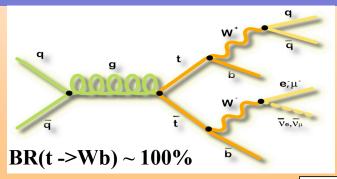

Unexpectedly huge mass

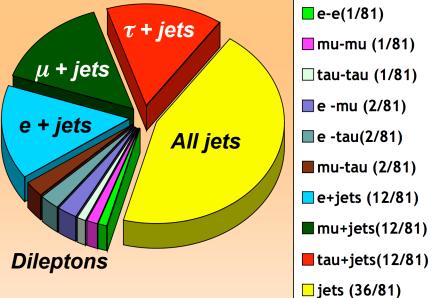

$$y_t = \frac{\sqrt{2m_t}}{v} \approx 1$$

- Special role in the dynamics of EWSB?
- Serves as a probe of BSM physics

- Decays before hadronizing
- Passes momentum and spin info to its decay products

Top Quark Pair Production and Decay

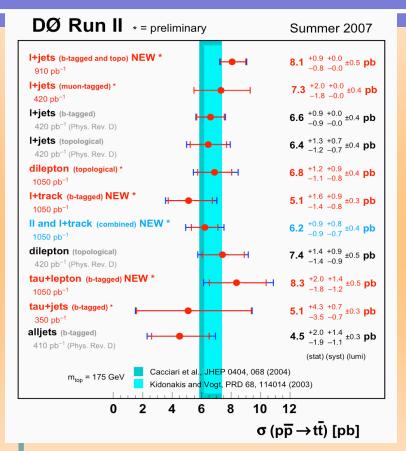


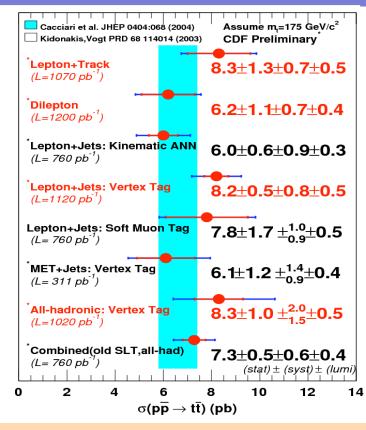

NLO:

• $\sigma_{tt} = 6.7 \pm {0.7 \atop 0.9} \, \text{pb}$ @ $m_{top} = 175 \, \text{GeV}$

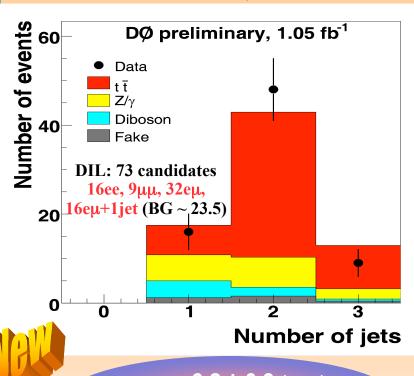
Cacciari et al. JHEP 0404:068(2004) Kidonakis,Vogt PRD 68 114014(2003)

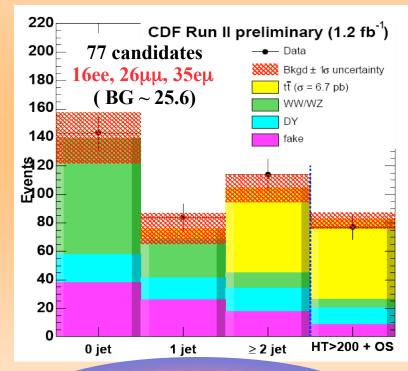
- Event Classification (by W decay)
 - "Lepton [e,μ] + jets" (30%)
 - tt → blvbqq'
 - "Dilepton [e,μ]" (5%)
 - $tt \rightarrow blvblv$
 - "All jets" (44%)
 - tt → bqq'bqq'
 - "Tau + X" (21%)





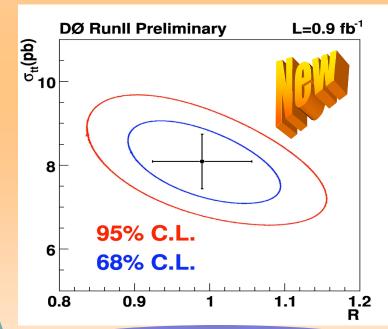
σ_{tt} Measurements

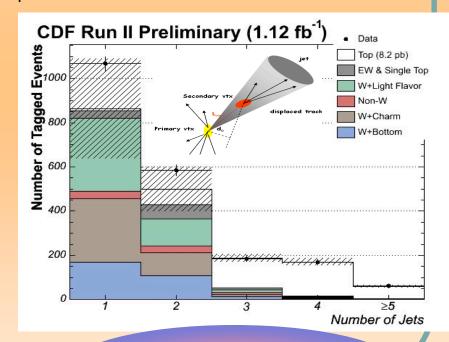

- Important indirect test of top quark properties
- Testing non-standard model top production mechanisms
- Top sample might contain an admixture of exotic processes


Cross Section in Dilepton channel

- Signature: high- P_T ee, $\mu\mu$, $e\mu$, missing E_T , ≥ 2 jets
- **DØ**: ≥ 1 jet in $e\mu$ channel, measurement combined with l+track

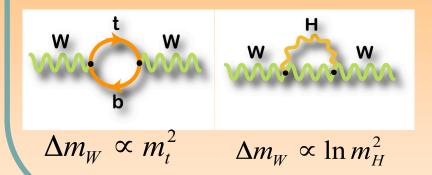
 $\sigma_{tt} = 6.2 \pm 0.9 \text{ (stat)}$ \$\pm 0.8 \text{ (syst) \$\pm 0.4 (lumi) pb}\$

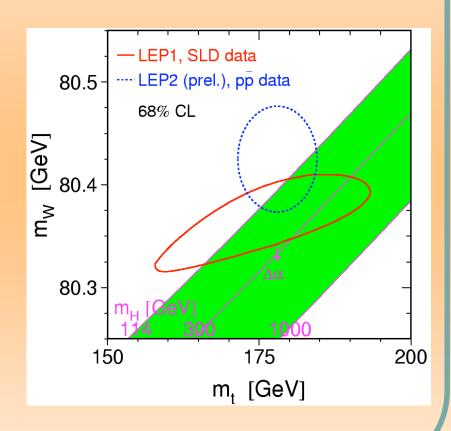

 $\sigma_{tt} = 6.2 \pm 1.1 \text{ (stat)}$ $\pm 0.7 \text{ (syst)} \pm 0.4 \text{ (lumi) pb}$



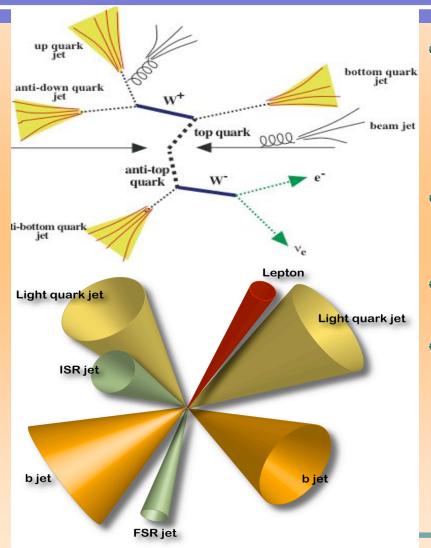
Lepton+jets cross section

- Signature: high-PT isolated e OR μ , missing E_T ,
- DØ: ≥ 3 jets, separate events depending on # of b-tagged jets (displaced vertex), measure simultaneously with R = BR(t->Wb)/ BR(t->Wq)
- CDF: \geq 3 jets, \geq 1 b-tagged jet, $\sum p_T > 250 \text{ GeV}$




 σ_{tt} = 8.1 ± 0.9 (stat+syst) ± 0.5 (lumi) pb R > 0.812 @ 95% CL

 $\sigma_{tt} = 8.5 \pm 0.5 \text{ (stat)}$ $\pm 0.8 \text{ (syst)} \pm 0.5 \text{ (lumi) pb}$

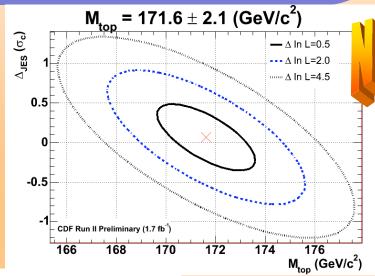

Top mass relation to Higgs

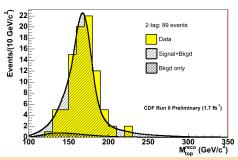
- Top quark mass is a fundamental parameter of SM
- Radiative corrections to SM predictions dominated by top mass
- Together with W mass places a constraint on Higgs mass

Top Mass Measurement

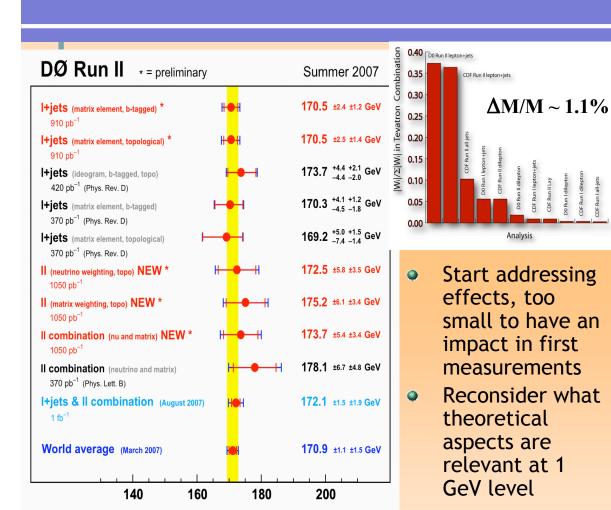
Kinematic reconstruction

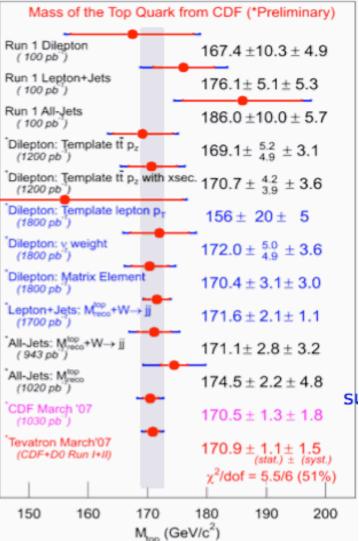
- Use invariant mass constraints $m(jj) = m_{W_{\perp}} m(\ell v) = m_{W_{\perp}} m(\ell vb) = m(jjb)$
- Match the jet to the correct parton
- Extra jets spoil the picture
- Energy Scale Calibration
 - Reconstruction of the measured jet energies to the parton level
- Sophisticated Analysis Techniques
 - Kinematic fits, Matrix Elements, etc
- Jet Energy Calibration in situ
 - Simultaneous fit to invariant mass of W->jj
 - An internal constraint on the error of the jet energy scale
 - Reduces systematic uncertainty



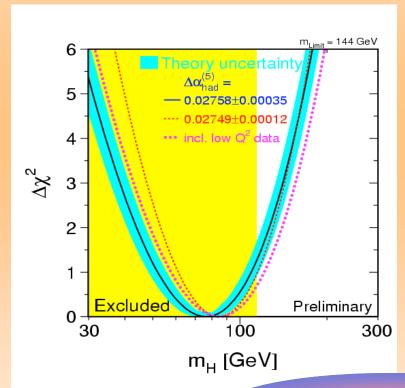

Best Top Mass Results in Lepton+jets channel

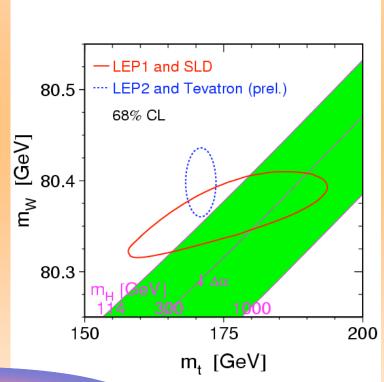
Exceeding original Run II
 expectations because of in-situ jet
 energy scale calibration


M_{top} = 170.5 ± 2.4 (stat+JES) ± 1.2 (syst) GeV


M_{top} = 171.6 ± 2.1 (stat+JES) ± 1.1 (syst) GeV

Top Mass Results

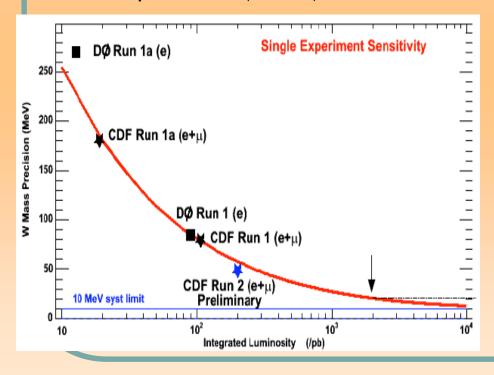


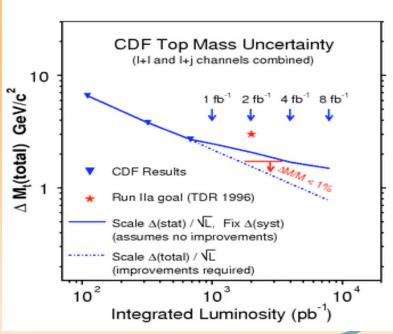


Top Quark Mass [GeV]

Indirect bounds on the Higgs

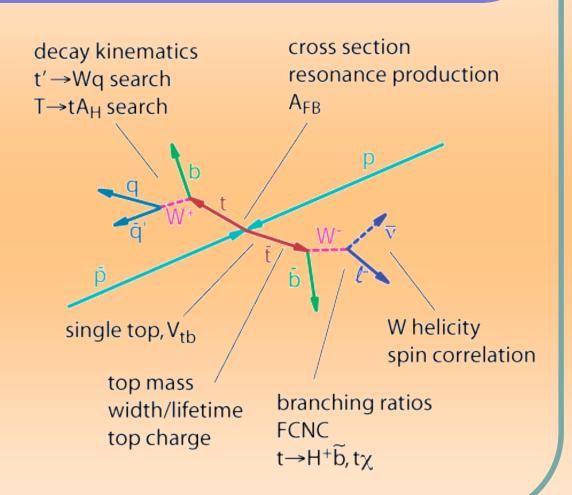
 Latest measurements of top mass push the most likely value of the Higgs boson deeper into the excluded region





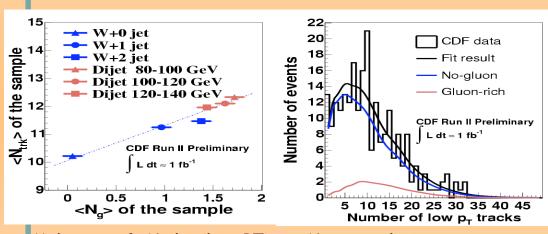
 $M_{higgs} = 76.5^{+33}_{-24} \text{ GeV}$

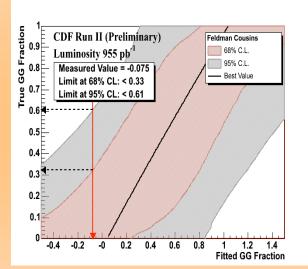
Mass Measurements Prospects


- Both for M_W and M_{top} Tevatron has done better than predicted
- Expect to get down to < 1 % uncertainty on top mass for CDF alone and ~1.0-1.2 GeV for CDF+DØ combined
- By the end of Run II W boson mass expected to be known with 20-25 MeV precision (0.02%)

Top Properties

- Tevatron performs very rich top physics program
- Many top properties measurements just beginning to have sensitivity
- Lots about top still to understand!




$\sigma(gg \rightarrow tt)/\sigma(pp \rightarrow tt)$ Measurement

Test of pQCD

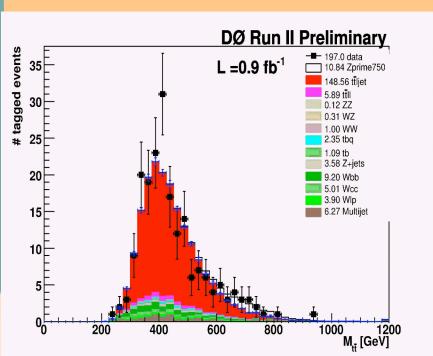
- G. L. Kane and S. Mrenna PRL 77: 3502-3505 (1996)
- May reveal existence of unknown tt production and top quark decay mechanisms (top quark from gluino decays, and decays to stops)

- Make use of <Ntrk> (low-PT) vs <Ng> correlation
- Calibrate in W+jets and dijet data
- Fit W+jets b-tagged data to gluon-rich (dijet 80-100 GeV) and no gluon (W+0jet) components

gg (qq-bar) tt-bar events tend to be produced with unlike (like) spin.

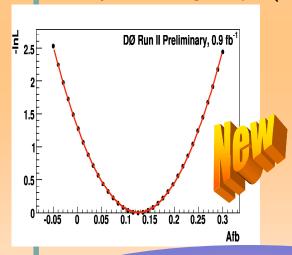
Use ANN to discriminate between both tt states and backgrounds

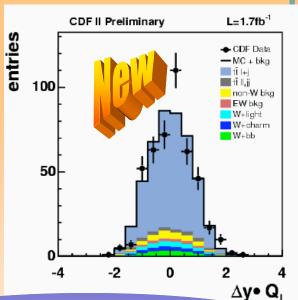
 $\sigma(gg->tt)/\sigma(pp->tt) = 0.07$ $\pm 0.14(stat) \pm 0.07(syst)$


 $\sigma(gg->tt)/\sigma(pp->tt) < 0.61$ @ 95%CL

Search for Resonant Top Pair Production

- Resonant top pair production could arise of massive Z-like bosons (Topcolor-Assisted Technicolor) and other BSM theories
 Hill, PRL B345, 483 (1995) Hill and Parke, PRD49, 4454 (1994))
- No evidence for resonance observed
- Limits on masses of various exotic particles being set

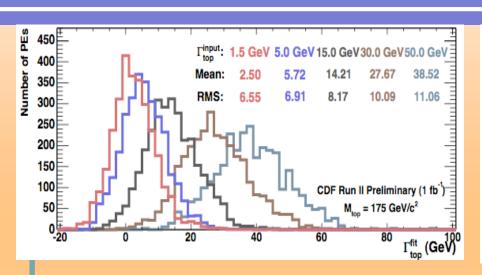


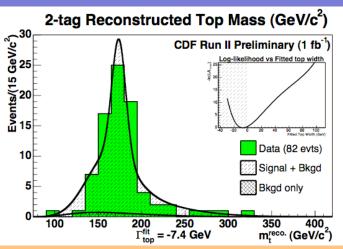


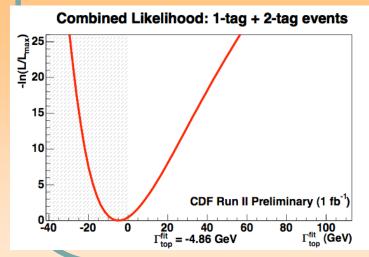
Forward-backward charge asymmetry in top pair production

- NLO calculations predict forward-backward asymmetry of 4-6%
- J.Kühn et al. PRL 81, 49 (1998), PRD 59, 054017 (1999)
- Asymmetry arises from interference between contributions
 symmetric and antisymmetric under the exchange: top -> anti-top
- Top pairs in lepton + ≥ 4 jets channel are fully reconstructed
- Make use of Lorentz-invariant rapidity difference of top and anti-top times the lepton charge: $\Delta y \cdot Q_l$ variable

- Numbers of events measured in two bins: positive and negative values of Δy·Q_l
- CDF: The asymmetry value is background subtracted and corrected for smearing effects of ttbar pair reconstruction with the inversion of 2x2 matrix




A $_{fb}[DØ] = 12 \pm 8(stat) \pm 1(syst) \%$ (not corrected for acceptance and reconstruction effects)


 $A_{fb}[CDF] = 28 \pm 13(stat) \pm 5(syst) \%$

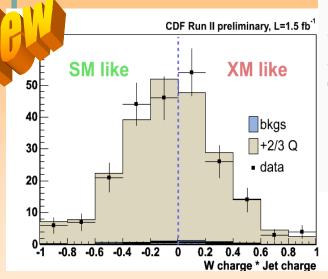
Top Quark Width

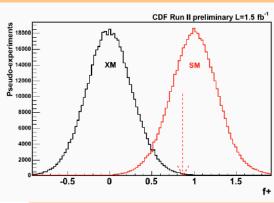
- Compare top mass distributions to Monte Carlo with various input width
- Use Feldman-Cousins prescriptions for setting the limit

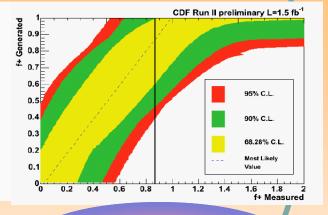
First direct measurement of top width in Run2

 $\Gamma_{\rm t}$ < 12.7 @ 95% CL (for Mt = 175 GeV)

Top Charge




• Is the top the SM particle with Q=+2/3 or an exotic quark Q=-4/3?


D. Chang et al. PRD 59, 091503

- Select and fully reconstruct top events in lepton+jets (2 b-tagged jets) and dilepton channel (≥1 tagged jet)
- Determine:
 - flavor of b-jet
 - charge of W (lepton)
 - \rightarrow pairing between W and b (χ^2 fit and M_{lb})

- Optimized to increase the signal purity
- Calibrated in a data sample of di-jet events

XM excluded with CL = 87%

f₊ > 0.4 @ 95%CL

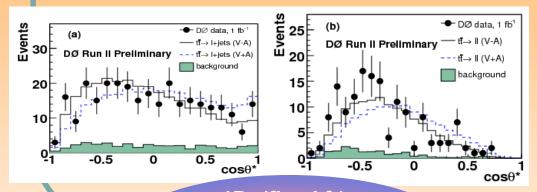
W Helicity

0.4

F.

 $\Delta \operatorname{InL}(F_0, F_{\downarrow})$

60


40

20

Test of the V-A structure of tWb vertex:

$$\frac{-ig}{2\sqrt{2}}\bar{t}\gamma^{\mu}(1-\gamma^5)V_{tb}bW_{\mu}$$

- SM prediction:
 - f_ ${\sim}30\%$ -left-handed; f_ ${\sim}70\%$ longitudinal; f_ ${\sim}0.036\%$ right-handed
- CDF: lepton+≥ 4 jets (≥ 1 tag) events
 - Two techniques: different event reconstruction and btagging algorithm
- DØ: add di-lepton channel, no b-tagging
- Measure angular distribution of charged lepton wrt top in W rest frame: $\cos\theta^*$
- Fit helicity fractions with unbinned likelihood

 $f_0 = 0.65 \pm 0.10 \text{(stat)} \pm 0.06 \text{(syst)}$ $f_+ < 0.12 @ 95\%\text{CL}$ 0.8 0.7 SM 0.6 0.5 0.4 0.3 0.2 0.1

0.2

1D: (fixed f₀ or f₊)

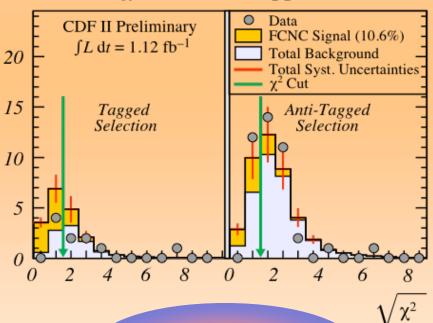
CDF Run II Preliminary

0

0.5

1D: (fixed f_0) $f_+ = 0.017 \pm 0.048(stat) \pm 0.047(syst)$

HS'07, 3-7 Sep $f_+ < 0.14 @ 95\%CL$ ew Ivanov, UC Davis


1D: (fixed f_0 or f_+) $f_0 = 0.57 \pm 0.11(stat) \pm 0.04(syst)$ $f_+ < 0.07 @ 95\%CL$

Search for FCNC t->Zq

- FCNC are rare in the Standard Model
- Within the SM:
 - BR(t->Zq) = $O(10^{-14})$
- Beyond the SM predicted can be up to O(10⁻²)
- Signature: tt-> ZqWb->llqqqb g
- Dominant background: Z+jets 💆 20
- Blind search in Z + ≥ 4 jets channel
- Use 2 signal regions to increase sensitivity: 1 loose tag and anti-tag
- Use χ^2 from the kinematic fit
- New limit surpasses the LEP limit

Mass χ² (95% C.L. Upper Limit)

BR(t->Zq) < 10.6% @ 95%CL

Conclusions

- Tevatron experiments have in hands 2 fb⁻¹ of data and produce plenty of physics results
- Aiming for 6-8 fb⁻¹ of data by 2009 with two well understood detectors and continuously improving accelerator performance
- Tests of the Standard Model are performed at the level of precision, which meets or surpasses that of LEP
- Valuable constraints within SM e.g. PDFs, NNLO QCD will come with final datasets
- Fed into Top/W Mass measurement improvements Constraints on Higgs Mass
 - Top Mass Precision = 1.1% => ~ 0.7% by the end of Run II
 - W Mass Precision = 0.04% => ~ 0.02% by the end of Run II
- The Higgs boson hunt is under way
- New Physics might be around the corner!